//---------------------------------------------------------------------------
/*
The Rampal Etienne Project, calculates the probability of a phylogeny
(C) 2009-2015 Richel Bilderbeek
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//---------------------------------------------------------------------------
// From http://www.richelbilderbeek.nl
//---------------------------------------------------------------------------
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Weffc++"
#include "sortedbinarynewickvector.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <numeric>
#include <boost/numeric/conversion/cast.hpp>
#include "binarynewickvector.h"
#include "newick.h"
#pragma GCC diagnostic pop
ribi::SortedBinaryNewickVector::SortedBinaryNewickVector(const SortedBinaryNewickVector& rhs)
: m_v(rhs.Peek())
{
assert(Newick().IsNewick(m_v));
assert(Newick().IsUnaryNewick(m_v) || Newick().IsBinaryNewick(m_v));
//Assume rhs is sorted
}
ribi::SortedBinaryNewickVector::SortedBinaryNewickVector(const std::vector<int>& any_v)
: m_v(any_v)
{
assert(Empty()
|| ( Newick().IsNewick(m_v)
&& (Newick().IsUnaryNewick(m_v)
|| Newick().IsBinaryNewick(m_v))));
Sort();
}
ribi::SortedBinaryNewickVector::SortedBinaryNewickVector(const BinaryNewickVector& rhs)
: m_v(rhs.Peek())
{
assert(Newick().IsNewick(m_v));
assert(Newick().IsUnaryNewick(m_v)
|| Newick().IsBinaryNewick(m_v));
Sort();
}
bool ribi::operator<(const SortedBinaryNewickVector& lhs, const SortedBinaryNewickVector& rhs)
{
//return lhs.v < rhs.v;
return ribi::SortedBinaryNewickVector::NewickCompare(lhs.Peek(),rhs.Peek());
}
double ribi::SortedBinaryNewickVector::CalculateProbability(
const std::string& newick_str,
const double theta)
{
assert(Newick().IsNewick(newick_str));
assert(Newick().IsUnaryNewick(Newick().StringToNewick(newick_str))
|| Newick().IsBinaryNewick(Newick().StringToNewick(newick_str)));
assert(theta > 0.0);
SortedBinaryNewickVector newick(newick_str);
NewickStorage<SortedBinaryNewickVector> storage(newick);
return Newick().CalculateProbability(
newick,
theta,
storage);
}
std::string ribi::SortedBinaryNewickVector::ToStr() const
{
return Newick().NewickToString(Peek());
}
double ribi::SortedBinaryNewickVector::CalcDenominator(
const double theta) const
{
return Newick().CalcDenominator(Peek(),theta);
}
//From a certain SortedBinaryNewickVector,
//returns the probability
double ribi::SortedBinaryNewickVector::CalcProbabilitySimpleNewick(const double theta) const
{
assert(IsSimple());
const int sz = m_v.size();
int n=0;
int k=0;
double probability = 1.0;
for (int i=0; i!=sz; ++i)
{
if (m_v[i]>0)
{
const int ni = m_v[i];
++k;
++n;
for (int p=1; p!=ni; ++p, ++n)
{
probability *= (static_cast<double>(p) / ( static_cast<double>(n) + theta));
}
probability /= ( static_cast<double>(n) + theta);
}
}
probability *= (static_cast<double>(n)+theta)
* std::pow(theta,static_cast<double>(k-1));
return probability;
}
int ribi::SortedBinaryNewickVector::FindPosAfter(const std::vector<int>& v,const int x, const int index)
{
const int sz = v.size();
for (int i=index; i!=sz; ++i)
{
if (v[i]==x) return i;
}
return sz;
}
int ribi::SortedBinaryNewickVector::FindPosBefore(const std::vector<int>& v,const int x, const int index)
{
for (int i=index; i!=-1; --i)
{
if (v[i]==x) return i;
}
return -1;
}
std::string ribi::SortedBinaryNewickVector::GetVersion() noexcept
{
return "3.0";
}
std::vector<std::string> ribi::SortedBinaryNewickVector::GetVersionHistory() noexcept
{
return {
"2011-03-11: Version 3.0: initial versioning, following BinaryNewickVector"
};
}
bool ribi::SortedBinaryNewickVector::IsCloseBracketRight(const int pos) const
{
const int sz = m_v.size();
assert(pos >= 0);
assert(pos < sz);
assert(m_v[pos]==1);
for (int i=pos+1; i!=sz; ++i) //+1 because v[pos]==1
{
const int x = m_v[i];
if (x == Newick::bracket_close) return true;
if (x == Newick::bracket_open) return false;
}
//There will always be a final closing bracket at the right
// that is not stored in a SortedBinaryNewickVector's std::vector
return true;
}
bool ribi::SortedBinaryNewickVector::IsOpenBracketLeft(const int pos) const
{
assert(pos >= 0);
assert(pos < static_cast<int>(m_v.size()));
assert(m_v[pos]==1);
for (int i=pos-1; i!=-1; --i) //-1, because v[pos]==1
{
const int x = m_v[i];
if (x == Newick::bracket_open) return true;
if (x == Newick::bracket_close) return false;
}
//There will always be a trailing opening bracket at the left
// that is not stored in a SortedBinaryNewickVector's std::vector
return true;
}
bool ribi::SortedBinaryNewickVector::IsSimple() const
{
return Newick().IsSimple(Peek());
}
//Does the following conversions:
// (5,(5,1)) -> (5,6)
// (4,(5,1)) -> (4,6)
// (4,(3,1)) -> (4,4)
// (4,(1,1)) -> (4,2)
// string_pos points at an index in the string current.newick after the '1'
// For example, for (4,(3,1)) the string_pos equals 7
// num is the other value between brackets
// For example, for (4,(3,1)) num will equal 3
// (5,(5,1)) -> (5,6)
// -> sz = 9
// -> bracket_open_pos = 3
// -> bracket_close_pos = 7
// -> sz_loss = 4 = 7 - 3 = bracket_close_pos - bracket_open_pos
// -> new_sz = 5
const ribi::SortedBinaryNewickVector ribi::SortedBinaryNewickVector::LoseBrackets(const int x, const int i) const
{
assert(i >= 0);
assert(i < Size());
assert(m_v[i] == 1);
assert(x>0);
std::vector<int> v_copy = m_v;
const int bracket_open_pos
= FindPosBefore(m_v,Newick::bracket_open,i);
assert(bracket_open_pos > -1);
const int bracket_close_pos
= FindPosAfter(m_v,Newick::bracket_close,i);
assert(bracket_close_pos < Size());
const int sz = Size();
const int sz_lose = bracket_close_pos - bracket_open_pos;
const int sz_new = sz - sz_lose;
v_copy[bracket_open_pos] = x+1;
const std::vector<int>::iterator begin_iter(&v_copy[bracket_close_pos+1]);
const std::vector<int>::iterator output_iter(&v_copy[bracket_open_pos+1]);
std::copy(begin_iter,v_copy.end(),output_iter);
v_copy.resize(sz_new);
return SortedBinaryNewickVector(v_copy);
}
const ribi::SortedBinaryNewickVector ribi::SortedBinaryNewickVector::TermIsNotOne(const int i) const
{
assert(m_v[i]>1);
std::vector<int> v(m_v);
--v[i];
return SortedBinaryNewickVector(v);
}
//TermIsOne is called whenever a '1' is found in a newick structure
//string_pos has the index of the character after this '1'
// (when a string has multiple 1's, TermIsOne is called for each '1',
// with each time a different string_pos)
//If this '1' is between two brackets, with one other number,
// these two numbers are added and the brackets are removed
//If this '1' is not between two brackets,
// the newick string returned is empty
//Conversion examples
// (3,(15,1)), string_pos 8 -> (3,16)
// ^ EXIT1
// (2,(23,1)), string_pos 8 -> (2,24)
// ^ EXIT1
// (1,(20,5)), string_pos 2 -> [empty]
// ^ EXIT-2
// (1,(1,1)), string_pos 2 -> [empty]
// ^ EXIT-2
// (1,(1,1)), string_pos 5 -> (1,2)
// ^ EXIT-2
// (1,(1,1)), string_pos 7 -> (1,2)
// ^ EXIT-1
// ((1,2,3),3), string_pos 3 -> (3,3) //Might be incorrect: algorithm holds for two numbers between brackets
// ^
const ribi::SortedBinaryNewickVector ribi::SortedBinaryNewickVector::TermIsOne(const int i) const
{
const int sz = m_v.size();
//assert(new_newick.empty());
assert(i < sz);
assert(m_v[i] == 1); //Must be a 1
const bool open_bracket_left
= IsOpenBracketLeft(i);
const bool close_bracket_right
= IsCloseBracketRight(i);
if (open_bracket_left == true
&& close_bracket_right == true)
{
//Find other_value
int other_value = 0;
//If adjecent to the left is a comma
// and subsequently a value,
if (i > 0
&& m_v[i-1] > 0)
{
other_value = m_v[i-1];
}
else if (i + 1 < sz
&& m_v[i+1] > 0)
{
other_value = m_v[i+1];
}
assert(other_value >= 1);
return LoseBrackets(other_value,i);
}
//Return an empty SortedBinaryNewickVector
return SortedBinaryNewickVector(std::vector<int>());
}
void ribi::SortedBinaryNewickVector::Sort()
{
//return;
#ifndef _WIN32
//g++ has some trouble with type conversions
typedef std::vector<int>::const_iterator Iter;
const Iter b = m_v.begin();
const Iter e = m_v.end();
m_v = Sort(b,e);
#else
m_v = Sort(m_v.begin(),m_v.end());
#endif
}
const std::vector<int> ribi::SortedBinaryNewickVector::Sort(
const std::vector<int>::const_iterator b,
const std::vector<int>::const_iterator e) const
{
int level = 0;
std::vector<int> v;
std::vector<std::vector<int> > v_sub;
std::vector<int>::const_iterator b_sub(e); //e, because g++ does not allow a null
for (std::vector<int>::const_iterator i = b; i!=e; ++i)
{
const int x = *i;
if (x == Newick::bracket_open)
{
++level;
if (level == 1)
{
//i+1, because the branch starts directly after the bracket open
b_sub = i + 1;
}
}
else if (x == Newick::bracket_close)
{
if (level == 1)
{
//i, because the branch ends directly before the bracket open
//TRACE(ToString(std::vector<int>(b_sub,i),false));
v_sub.push_back(Sort(b_sub,i));
b_sub = e; //e, because g++ does not allow a null
}
--level;
}
else if (level==0)
{
//x is a value
v.push_back(x);
}
}
//assert(std::find(v.begin(),v.end(),
// std::bind1st(std::equal_to<int>(),
// static_cast<int>(Newick::bracket_open)))
// == v.end()); //v must not contain brackets open
//assert(std::find(v.begin(),v.end(),
// std::bind1st(std::equal_to<int>(),
// static_cast<int>(Newick::bracket_close)))
// == v.end()); //v must not contain brackets close
std::sort(std::begin(v),std::end(v)); //v only contains values
std::sort(v_sub.begin(),v_sub.end(),NewickCompare);
//TRACE("Level 0 entries: " + ToString(v,false));
//Concatenate the values in v with the sorted branches in v_sub
const int n_subs = v_sub.size();
for (int i=0; i!=n_subs; ++i)
{
//TRACE("Level 1 entries: " + ToString(std::vector<int>(v_sub[i].begin(),v_sub[i].end()),false));
v.push_back(Newick::bracket_open);
std::copy(v_sub[i].begin(),v_sub[i].end(),std::back_inserter(v));
v.push_back(Newick::bracket_close);
}
//TRACE("Sort to std::vector: " + ToString(v,false));
assert(e - b == static_cast<int>(v.size()));
return v;
}
bool ribi::SortedBinaryNewickVector::NewickCompare(
const std::vector<int>& lhs,
const std::vector<int>& rhs)
{
const int l_sz = lhs.size();
const int r_sz = rhs.size();
if (l_sz < r_sz) return true;
if (l_sz > r_sz) return false;
typedef std::vector<int>::const_iterator Iter;
Iter lhs_iter = lhs.begin();
const Iter lhs_end = lhs.end();
Iter rhs_iter = rhs.begin();
for ( ; lhs_iter != lhs_end; ++lhs_iter, ++rhs_iter)
{
const int x_l = *lhs_iter;
const int x_r = *rhs_iter;
if (x_l < x_r) return true;
if (x_l > x_r) return false;
}
return false;
}
|