//---------------------------------------------------------------------------
/*
NewickVector, class to store a Newick as a std::vector<int>
Copyright (C) 2010-2015 Richel Bilderbeek
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program.If not, see <http://www.gnu.org/licenses/>.
*/
//---------------------------------------------------------------------------
//From http://www.richelbilderbeek.nl/CppNewickVector.htm
//---------------------------------------------------------------------------
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Weffc++"
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#include "newickvector.h"
#include <algorithm>
#include <cassert>
#include <deque>
#include <iostream>
#include <functional>
#include <map>
#include <numeric>
#include <stdexcept>
#include <string>
#include <sstream>
#include <vector>
#include <boost/numeric/conversion/cast.hpp>
#include <boost/lexical_cast.hpp>
#include "BigIntegerLibrary.hh"
#include "fuzzy_equal_to.h"
#include "newick.h"
#include "testtimer.h"
#include "trace.h"
#pragma GCC diagnostic pop
ribi::NewickVector::NewickVector(const std::string& s)
: m_v{Newick().StringToNewick(s)}
{
#ifndef NDEBUG
Test();
#endif
assert(Newick().IsNewick(s));
//Can this be added?
//assert(m_v.empty() || Newick().IsNewick(m_v));
}
ribi::NewickVector::NewickVector(const std::vector<int>& v)
: m_v{v}
{
#ifndef NDEBUG
Test();
#endif
assert(m_v.empty() || Newick().IsNewick(m_v));
}
const BigInteger ribi::NewickVector::CalcComplexity() const
{
return Newick().CalcComplexity(m_v);
}
double ribi::NewickVector::CalcDenominator(const double theta) const
{
return Newick().CalcDenominator(Peek(),theta);
}
const BigInteger ribi::NewickVector::CalcNumOfCombinations() const
{
assert(Newick().IsNewick(m_v));
return Newick().CalcNumOfCombinationsBinary(m_v);
}
const BigInteger ribi::NewickVector::CalcNumOfSymmetries() const
{
assert(Newick().IsNewick(m_v));
assert(Newick().IsBinaryNewick(m_v));
return Newick().CalcNumOfSymmetriesBinary(m_v);
}
double ribi::NewickVector::CalculateProbability(
const std::string& newick_str,
const double theta)
{
assert(Newick().IsNewick(newick_str));
assert(theta > 0.0);
NewickVector newick(newick_str);
NewickStorage<NewickVector> storage(newick);
return CalculateProbabilityInternal(
newick,
theta,
storage);
}
double ribi::NewickVector::CalculateProbabilityInternal(
const NewickVector& n,
const double theta,
NewickStorage<NewickVector>& storage)
{
while(1)
{
//Is n already known?
{
const double p = storage.Find(n);
if (p!=0.0)
{
return p;
}
}
//Check for simple phylogeny
if (n.IsSimple())
{
const double p = n.CalcProbabilitySimpleNewick(theta);
storage.Store(n,p);
return p;
}
//Complex
//Generate other Newicks and their coefficients
std::vector<double> coefficients;
std::vector<NewickVector> newicks;
{
const double d = n.CalcDenominator(theta);
#ifdef DEBUG_NEWICKVECTOR_CALCULATEPROBABILITYINTERNAL
TRACE("Denominator for "
+ n.ToStr()
+ " = "
+ boost::lexical_cast<std::string>(d));
#endif
typedef std::pair<std::vector<int>,int> NewickFrequencyPair;
const std::vector<NewickFrequencyPair> newick_freqs
= Newick().GetSimplerNewicksFrequencyPairs(n.Peek());
for(const NewickFrequencyPair& p: newick_freqs)
{
const int frequency = p.second;
assert(frequency > 0);
if (frequency == 1)
{
newicks.push_back(p.first);
coefficients.push_back(theta / d);
}
else
{
const double f_d = static_cast<double>(frequency);
newicks.push_back(p.first);
coefficients.push_back( (f_d*(f_d-1.0)) / d);
}
#ifdef DEBUG_NEWICKVECTOR_CALCULATEPROBABILITYINTERNAL
TRACE("NewickVector "
+ Newick::NewickToString(p.first)
+ " has coefficient "
+ boost::lexical_cast<std::string>(coefficients.back()));
#endif
}
}
//Ask help about these new Newicks
{
const int sz = newicks.size();
assert(newicks.size() == coefficients.size() );
double p = 0.0;
for (int i=0; i!=sz; ++i)
{
//Recursive function call
p+=(coefficients[i] * CalculateProbabilityInternal(newicks[i],theta,storage));
}
storage.Store(n,p);
return p;
}
}
}
double ribi::NewickVector::CalcProbabilitySimpleNewick(const double theta) const
{
assert(Newick().IsSimple(m_v));
assert(theta > 0.0);
return Newick().CalcProbabilitySimpleNewick(m_v,theta);
}
int ribi::NewickVector::FindPosAfter(const std::vector<int>& v,const int x, const int index) const
{
const int sz = v.size();
for (int i=index; i!=sz; ++i)
{
assert(i >= 0);
assert(i < sz);
if (v[i]==x) return i;
}
return sz;
}
int ribi::NewickVector::FindPosBefore(const std::vector<int>& v,const int x, const int index) const
{
for (int i=index; i!=-1; --i)
{
#ifndef NDEBUG
const int sz = static_cast<int>(v.size());
assert(i >= 0);
assert(i < sz);
#endif
if (v[i]==x) return i;
}
return -1;
}
const std::vector<ribi::NewickVector> ribi::NewickVector::GetSimplerNewicks() const
{
assert(Newick().IsNewick(m_v));
const std::vector<std::vector<int> > v
= Newick().GetSimplerBinaryNewicks(m_v);
std::vector<NewickVector> w(std::begin(v),std::end(v));
return w;
}
const std::pair<ribi::NewickVector,ribi::NewickVector> ribi::NewickVector::GetRootBranches() const
{
assert(Newick().IsNewick(m_v));
std::pair<std::vector<int>,std::vector<int> > p
= Newick().GetRootBranchesBinary(m_v);
return p;
}
std::string ribi::NewickVector::GetVersion() noexcept
{
return "2.1";
}
std::vector<std::string> ribi::NewickVector::GetVersionHistory() noexcept
{
return {
"2009-06-01: Version 1.0: Initial version",
"2010-08-10: Version 1.1: Major architectural revision",
"2011-02-20: Version 1.2: Removed helper functions from global namespace",
"2011-02-22: Version 2.0: Changed file management",
"2011-04-08: Version 2.1: fixed error forgiven by G++, but fatal for i686-pc-mingw32-qmake"
};
}
bool ribi::NewickVector::IsCloseBracketRight(const int pos) const
{
const int sz = m_v.size();
assert(pos >= 0);
assert(pos < sz);
assert(m_v[pos]==1);
for (int i=pos+1; i!=sz; ++i) //+1 because v[pos]==1
{
const int x = m_v[i];
if (x == Newick::bracket_close) return true;
if (x == Newick::bracket_open) return false;
}
//There will always be a final closing bracket at the right
// that is not stored in a SortedNewickVector's std::vector
return true;
}
bool ribi::NewickVector::IsOpenBracketLeft(const int pos) const
{
assert(pos >= 0);
assert(pos < static_cast<int>(m_v.size()));
assert(m_v[pos]==1);
for (int i=pos-1; i!=-1; --i) //-1, because v[pos]==1
{
const int x = m_v[i];
if (x == Newick::bracket_open) return true;
if (x == Newick::bracket_close) return false;
}
//There will always be a trailing opening bracket at the left
// that is not stored in a SortedNewickVector's std::vector
return true;
}
bool ribi::NewickVector::IsSimple() const
{
return Newick().IsSimple(m_v);
}
//Does the following conversions:
// (5,(5,1)) -> (5,6)
// (4,(5,1)) -> (4,6)
// (4,(3,1)) -> (4,4)
// (4,(1,1)) -> (4,2)
// string_pos points at an index in the string current.newick after the '1'
// For example, for (4,(3,1)) the string_pos equals 7
// num is the other value between brackets
// For example, for (4,(3,1)) num will equal 3
// (5,(5,1)) -> (5,6)
// -> sz = 9
// -> bracket_open_pos = 3
// -> bracket_close_pos = 7
// -> sz_loss = 4 = 7 - 3 = bracket_close_pos - bracket_open_pos
// -> new_sz = 5
const ribi::NewickVector ribi::NewickVector::LoseBrackets(const int x, const int i) const
{
assert(i >= 0);
assert(i < Size());
assert(m_v[i] == 1);
assert(x>0);
std::vector<int> v_copy = m_v;
const int bracket_open_pos
= FindPosBefore(m_v,Newick::bracket_open,i);
assert(bracket_open_pos > -1);
const int bracket_close_pos
= FindPosAfter(m_v,Newick::bracket_close,i);
assert(bracket_close_pos < Size());
const int sz = Size();
const int sz_lose = bracket_close_pos - bracket_open_pos;
const int sz_new = sz - sz_lose;
v_copy[bracket_open_pos] = x+1;
const std::vector<int>::iterator begin_iter(&v_copy[bracket_close_pos+1]);
const std::vector<int>::iterator output_iter(&v_copy[bracket_open_pos+1]);
std::copy(begin_iter,v_copy.end(),output_iter);
v_copy.resize(sz_new);
return NewickVector(v_copy);
}
bool ribi::NewickVector::NewickCompare(
const std::vector<int>& lhs,
const std::vector<int>& rhs) noexcept
{
const int l_sz = lhs.size();
const int r_sz = rhs.size();
if (l_sz < r_sz) return true;
if (l_sz > r_sz) return false;
typedef std::vector<int>::const_iterator Iter;
Iter lhs_iter = lhs.begin();
const Iter lhs_end = lhs.end();
Iter rhs_iter = rhs.begin();
for ( ; lhs_iter != lhs_end; ++lhs_iter, ++rhs_iter)
{
const int x_l = *lhs_iter;
const int x_r = *rhs_iter;
if (x_l < x_r) return true;
if (x_l > x_r) return false;
}
return false;
}
int ribi::NewickVector::Size() const noexcept
{
return boost::numeric_cast<int>(m_v.size());
}
const ribi::NewickVector ribi::NewickVector::TermIsNotOne(const int i) const
{
assert(m_v[i]>1);
std::vector<int> v(m_v);
--v[i];
return NewickVector(v);
}
//TermIsOne is called whenever a '1' is found in a newick structure
//string_pos has the index of the character after this '1'
// (when a string has multiple 1's, TermIsOne is called for each '1',
// with each time a different string_pos)
//If this '1' is between two brackets, with one other number,
// these two numbers are added and the brackets are removed
//If this '1' is not between two brackets,
// the newick string returned is empty
//Conversion examples
// (3,(15,1)), string_pos 8 -> (3,16)
// ^ EXIT1
// (2,(23,1)), string_pos 8 -> (2,24)
// ^ EXIT1
// (1,(20,5)), string_pos 2 -> [empty]
// ^ EXIT-2
// (1,(1,1)), string_pos 2 -> [empty]
// ^ EXIT-2
// (1,(1,1)), string_pos 5 -> (1,2)
// ^ EXIT-2
// (1,(1,1)), string_pos 7 -> (1,2)
// ^ EXIT-1
// ((1,2,3),3), string_pos 3 -> (3,3) //Might be incorrect: algorithm holds for two numbers between brackets
// ^
const ribi::NewickVector ribi::NewickVector::TermIsOne(const int i) const
{
const int sz = m_v.size();
//assert(new_newick.empty());
assert(i < sz);
assert(m_v[i] == 1); //Must be a 1
const bool open_bracket_left
= IsOpenBracketLeft(i);
const bool close_bracket_right
= IsCloseBracketRight(i);
if (open_bracket_left == true
&& close_bracket_right == true)
{
//Find other_value
int other_value = 0;
//If adjecent to the left is a comma
// and subsequently a value,
if (i > 0
&& m_v[i-1] > 0)
{
other_value = m_v[i-1];
}
else if (i + 1 < sz
&& m_v[i+1] > 0)
{
other_value = m_v[i+1];
}
assert(other_value >= 1);
return LoseBrackets(other_value,i);
}
//Return an empty SortedNewickVector
return NewickVector(std::vector<int>());
}
#ifndef NDEBUG
void ribi::NewickVector::Test() noexcept
{
{
static bool is_tested{false};
if (is_tested) return;
is_tested = true;
}
{
Newick();
}
const TestTimer test_timer(__func__,__FILE__,1.0);
const bool verbose{false};
//Test simplification of trinary Newick
{
//Simple trinary Newick
{
const std::string s = "(2,3,4)";
const std::vector<int> n = Newick().StringToNewick(s);
assert(Newick().IsTrinaryNewick(n));
const std::vector<std::vector<int> > ns = Newick().GetSimplerNewicks(n);
#ifdef DEBUG_BO_2_3_4_BC
for(const std::vector<int>& v: ns)
{
TRACE(Newick::NewickToString(v));
}
#endif
assert(ns.size() == 3);
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(1,3,4)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(2,2,4)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(2,3,3)")) != ns.end());
}
//Simple trinary Newick
{
const std::string s = "(1,2,3)";
const std::vector<int> n = Newick().StringToNewick(s);
assert(Newick().IsTrinaryNewick(n));
const std::vector<std::vector<int> > ns = Newick().GetSimplerNewicks(n);
assert(ns.size() == 4);
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(3,3)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(2,4)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(1,1,3)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(1,2,2)")) != ns.end());
}
//Complex trinary Newick
{
const std::string s = "((2,3),(4,5),(6,7))";
const std::vector<int> n = Newick().StringToNewick(s);
assert(Newick().IsTrinaryNewick(n));
const std::vector<std::vector<int> > ns = Newick().GetSimplerNewicks(n);
assert(ns.size() == 6);
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,3),(4,5),(6,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,2),(4,5),(6,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,3),(3,5),(6,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,3),(4,4),(6,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,3),(4,5),(5,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,3),(4,5),(6,6))")) != ns.end());
}
//Another trinary Newick
{
const std::string s = "((2,3),(1,5),(6,7))";
const std::vector<int> n = Newick().StringToNewick(s);
assert(Newick().IsTrinaryNewick(n));
const std::vector<std::vector<int> > ns = Newick().GetSimplerNewicks(n);
assert(ns.size() == 6);
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,3),(1,5),(6,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,2),(1,5),(6,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,3),6,(6,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,3),(1,4),(6,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,3),(1,5),(5,7))")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,3),(1,5),(6,6))")) != ns.end());
}
//Another trinary Newick
{
const std::string s = "((1,2,3),(4,5,6),1)";
const std::vector<int> n = Newick().StringToNewick(s);
assert(Newick().IsTrinaryNewick(n));
const std::vector<std::vector<int> > ns = Newick().GetSimplerNewicks(n);
assert(ns.size() == 7);
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((3,3),(4,5,6),1)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((2,4),(4,5,6),1)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,1,3),(4,5,6),1)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,2,2),(4,5,6),1)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,2,3),(3,5,6),1)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,2,3),(4,4,6),1)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,2,3),(4,5,5),1)")) != ns.end());
}
//Another trinary Newick
{
const std::string s = "((1,(1,1,1)),1)";
const std::vector<int> n = Newick().StringToNewick(s);
assert(Newick().IsTrinaryNewick(n));
const std::vector<std::vector<int> > ns = Newick().GetSimplerNewicks(n);
assert(ns.size() == 6);
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,(2,1)),1)")) != ns.end());
}
//Another trinary Newick
{
const std::string s = "(1,(1,1),1)";
const std::vector<int> n = Newick().StringToNewick(s);
assert(Newick().IsTrinaryNewick(n));
const std::vector<std::vector<int> > ns = Newick().GetSimplerNewicks(n);
//#define DEBUG_BO_1_BO_1_1_BC_1
#ifdef DEBUG_BO_1_BO_1_1_BC_1
TRACE(boost::lexical_cast<std::string>(ns.size()));
for(const std::vector<int>& v: ns)
{
TRACE(Newick::NewickToString(v));
}
#endif
assert(ns.size() == 4);
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(1,2,1)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,1),2)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("(2,(1,1))")) != ns.end());
}
//Another trinary Newick
{
const std::string s = "((1,(2,3,4)),5)";
const std::vector<int> n = Newick().StringToNewick(s);
assert(Newick().IsTrinaryNewick(n));
const std::vector<std::vector<int> > ns = Newick().GetSimplerNewicks(n);
assert(ns.size() == 4);
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,(1,3,4)),5)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,(2,2,4)),5)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,(2,3,3)),5)")) != ns.end());
assert(std::find(ns.begin(),ns.end(),
Newick().StringToNewick("((1,(2,3,4)),4)")) != ns.end());
}
}
//Check that well-formed Newicks are confirmed valid
{
const std::vector<std::string> v = Newick().CreateValidNewicks();
for(const std::string& s: v)
{
if (verbose) { TRACE("I must be accepted: " + s); }
//Check if valid newicks (as std::string) are marked as valid
try
{
Newick().CheckNewick(s);
}
catch (std::exception& e)
{
std::cerr << "(" << __FILE__ << "," << __LINE__ << ") "
<< s << ": " << e.what() << '\n'
;
}
//Check if valid newicks (as std::vector) are marked as valid
try
{
const std::vector<int> n = Newick().StringToNewick(s);
Newick().CheckNewick(n);
assert(Newick().IsNewick(n));
}
catch (std::exception& e)
{
std::cerr << s
<< " (converted to std::vector<int>): "
<< e.what()
;
}
//Check std::string conversion (from NewickVector(std::string))
try
{
NewickVector temp(s);
assert(s == temp.ToStr());
}
catch (std::exception& e)
{
std::cerr << s
<< " (NewickVector from std::string): "
<< e.what()
;
}
//Check std::string conversion (from NewickVector(std::vector<int>))
try
{
const std::vector<int> n = Newick().StringToNewick(s);
NewickVector temp(n);
assert(s == temp.ToStr());
}
catch (std::exception& e)
{
std::cerr << s
<< " (NewickVector from std::vector<int>): "
<< e.what()
;
}
assert(Newick().IsNewick(s));
//Check the simpler Newicks
{
const std::vector<std::vector<int> > simpler
= Newick().GetSimplerNewicks(
Newick().StringToNewick(s));
for(const std::vector<int> simple: simpler)
{
assert(Newick().IsNewick(simple));
Newick().CheckNewick(simple);
}
}
//Check the branches
#ifndef NDEBUG
if (!Newick().IsUnaryNewick(Newick().StringToNewick(s)))
{
const std::vector<std::vector<int> > b
= Newick().GetRootBranches(
Newick().StringToNewick(s));
for(const std::vector<int>& c: b)
{
assert(Newick().IsNewick(c));
}
}
#endif
}
}
//Check if ill-formed Newicks are rejected
{
const std::vector<std::string> v = Newick().CreateInvalidNewicks();
for(const std::string& s: v)
{
if (verbose) { TRACE("I must be rejected: " + s); }
assert(!Newick().IsNewick(s));
}
}
//Check that well-formed Newicks are confirmed valid
{
const std::vector<std::string> v = Newick().CreateValidNewicks();
for(const std::string& s: v)
{
if (verbose) { TRACE("I must be accepted: " + s); }
//Check if valid newicks (as std::string) are marked as valid
try
{
Newick().CheckNewick(s);
}
catch (std::exception& e)
{
std::cerr << "(" << __FILE__ << "," << __LINE__ << ") "
<< s << ": " << e.what() << '\n';
}
//Check if valid newicks (as std::vector) are marked as valid
try
{
const std::vector<int> n = Newick().StringToNewick(s);
Newick().CheckNewick(n);
assert(Newick().IsNewick(n));
}
catch (std::exception& e)
{
std::cerr << s
<< " (converted to std::vector<int>): "
<< e.what();
}
//Check std::string conversion (from NewickVector(std::string))
try
{
NewickVector temp(s);
assert(s == temp.ToStr());
}
catch (std::exception& e)
{
std::cerr << s
<< " (NewickVector from std::string): "
<< e.what();
}
//Check std::string conversion (from NewickVector(std::vector<int>))
try
{
const std::vector<int> n = Newick().StringToNewick(s);
NewickVector temp(n);
assert(s == temp.ToStr());
}
catch (std::exception& e)
{
std::cerr << s
<< " (NewickVector from std::vector<int>): "
<< e.what();
}
assert(Newick().IsNewick(s));
//Check the simpler Newicks
if (Newick().IsBinaryNewick(Newick().StringToNewick(s)))
{
const std::vector<std::vector<int> > simpler
= Newick().GetSimplerBinaryNewicks(
Newick().StringToNewick(s));
for(const std::vector<int> simple: simpler)
{
assert(Newick().IsNewick(simple));
Newick().CheckNewick(simple);
}
}
//Check the branches
if (Newick().IsBinaryNewick(Newick().StringToNewick(s)))
{
const std::pair<std::vector<int>,std::vector<int> > b
= Newick().GetRootBranchesBinary(Newick().StringToNewick(s));
assert(Newick().IsNewick(b.first));
assert(Newick().IsNewick(b.second));
}
}
}
//Calculate N1
#ifndef NDEBUG
{
const double theta = 23.45;
//Calculate probability the short way
const std::string n1 = "((1,1),1,1)";
const std::string n2 = "(1,(1,1),1)";
const std::string n3 = "(1,1,(1,1))";
const double p1 = ribi::NewickVector::CalculateProbability(n1,theta);
const double p2 = ribi::NewickVector::CalculateProbability(n2,theta);
const double p3 = ribi::NewickVector::CalculateProbability(n3,theta);
//Calculate probability via testable binary Newicks
const double p4
= theta
/ Newick().CalcDenominator(Newick().StringToNewick(n1),theta)
* ( (2.0 * ribi::NewickVector::CalculateProbability("(1,1,2)",theta) )
+ (2.0 * ribi::NewickVector::CalculateProbability("(2,(1,1))",theta) ) );
const double p5
= theta
/ Newick().CalcDenominator(Newick().StringToNewick(n1),theta)
* ( (2.0 * ribi::NewickVector::CalculateProbability("(1,2,1)",theta) )
+ (2.0 * ribi::NewickVector::CalculateProbability("(2,(1,1))",theta) ) );
const double p6
= theta
/ Newick().CalcDenominator(Newick().StringToNewick(n1),theta)
* ( (2.0 * ribi::NewickVector::CalculateProbability("(2,1,1)",theta) )
+ (2.0 * ribi::NewickVector::CalculateProbability("(2,(1,1))",theta) ) );
assert(ribi::fuzzy_equal_to()(p1,p2));
assert(ribi::fuzzy_equal_to()(p1,p3));
assert(ribi::fuzzy_equal_to()(p1,p4));
assert(ribi::fuzzy_equal_to()(p1,p5));
assert(ribi::fuzzy_equal_to()(p1,p6));
}
//Calculate N2
{
const double theta = 12.34;
//Calculate probability the short way
const std::string n = "((1,1,1),1)";
const double p1 = ribi::NewickVector::CalculateProbability(n,theta);
//Calculate probability via testable binary Newicks
const double p2
= theta
/ Newick().CalcDenominator(Newick().StringToNewick(n),theta)
* 6.0
* ribi::NewickVector::CalculateProbability("((2,1),1)",theta);
assert(ribi::fuzzy_equal_to()(p1,p2));
}
//Testing the known probabilities
{
const std::vector<boost::tuple<std::string,double,double> > v
= Newick().GetKnownProbabilities();
for(const auto& t: v)
{
const std::string newick_str = boost::get<0>(t);
const double theta = boost::get<1>(t);
const double p1 = boost::get<2>(t);
const double p2 = ribi::NewickVector::CalculateProbability(newick_str,theta);
assert(ribi::fuzzy_equal_to(0.001)(p1,p2));
}
}
#endif
}
#endif
std::string ribi::NewickVector::ToStr() const
{
assert(Newick().IsNewick(m_v));
return Newick().NewickToString(m_v);
}
bool ribi::operator<(const NewickVector& lhs, const NewickVector& rhs)
{
return ribi::NewickVector::NewickCompare(lhs.Peek(),rhs.Peek());
}
|